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Hall Effect in the Polaron-Band Regime* 
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A Hall effect is calculated for the band motion of the small polaron. The basic approach is to construct 
classical, Bloch-type wave packets from plane-wave combinations of localized polaron states. In this con
nection, it is shown that the effects of the "magnetic phase factors," which multiply the electronic overlap in
tegrals in the basic Hamiltonian, are contained entirely in the conventional magnetic part, ( « / C ) [ T , X H ] , of 
the total Lorentz force. The solutions of the steady-state Boltzmann equation for representative lattice 
structures indicate that the Hall coefficient is larger than or comparable to the "normal" value (R-— 1/nec) 
according to whether or not three sites of the lattice are mutually nearest neighbors. Such a result was pre
viously obtained in the alternate regime in which small polaron motion is due to hopping between local sites. 

INTRODUCTION 

IN a previous paper,1 a nonvanishing Hall effect was 
theoretically predicted for the thermally activated 

hopping motion of the small polaron. Such a conduction 
mechanism, as has been discussed at length,2 is prevalent 
at temperatures above a certain transition temperature 
Tt, which is ^ | the Debye temperature, 0 . This result 
is of some interest, since it provides an example3 of the 
existence of a Hall effect in hopping-type electronic 
transport. 

However, as has been discussed in I I , at sufficiently 
low temperatures (T<Tt) small polaron motion takes 
place in a band whose width Jp is an exponentially 
decreasing function of temperature.2A>5 The treatment 
of the Hall effect in this regime turns out to be formally 
similar to that of a conventional energy band. The only 
distinguishing feature with important physical conse
quences, as will be seen later, is the extreme smallness of 
the polaron bandwidth Jp with respect to KBT. How
ever, for this and other reasons which appear imme
diately below, the calculation is of interest in its own 
right, and is the subject of the present paper. 

In the polaron-band regime, the appropriate zeroth-
order states are plane-wave combinations of localized 
polaron states (i.e., states describing the localized elec
tron with its surrounding induced lattice deformation). 
The basic approach used in the calculation is to con
struct Bloch-type wave packets from these plane-wave 
states. I t is shown that these wave packets propagate in 
<r space6 according to a classical Lorentz force equation. 
In this connection, it is of particular interest that the 

* This paper represents part of a thesis submitted by the author 
in partial fulfillment of the Ph.D. degree, granted by the Uni
versity of Pittsburgh, 1961. 

1 L. Friedman and T. Holstein, Ann. Phys. (N. Y.) 21, 494 
(1963); hereafter to be referred to as III. 

2 T. Holstein, Ann. Phys. (N. Y.) 8, 343 (1959); hereafter to be 
referred to as II . 

8 For another example, that of the impurity conduction regime 
of a semiconductor, see T. Holstein, Phys. Rev. 124, 1329 (1961). 

4 J. Yamashita and T. Kurosawa, J. Phys. Chem. Solids 5, 34 
(1958). 

5 G. L. Sewell, Phil. Mag. 3, 1361 (1959). 
6 Here cr denotes the wave vector of the polaron. This is to be 

distinguished from k, which will represent the wave vector of the 
lattice vibrations. 

effects of the "magnetic phase factors,"7-9 ag>g+h, which 
were crucial in giving rise to a Hall effect in the site-
jump regime, are shown to be contained entirely in the 
conventional magnetic component (e/c)[V«rXH]| of the 
total Lorentz force. Such a result is expected in the 
classical correspondence limit. More generally, the 
derivation of this result applies to any standard tight-
binding treatment of band motion in which the effects 
of the applied magnetic field are formulated in terms of 
the above factors. To emphasize this point, in Appendix 
A, we sketch the derivation for the conventional atomic 
tight-binding case discussed by ZiPberman.9 

The Lorentz force term derived by this procedure 
then plays the role of the driving term in a Boltzmann 
equation describing the polaron-band motion. A relaxa
tion time assumption is made for the scattering term, 
with the relaxation time taken to be a constant.10 

The Boltzmann equation is then solved to lowest 
order in H by the iteration method of Jones and Zener.11 

I t is solved for three representative two-dimensional 
lattice structures, namely, square, face-centered, and 
(equilateral) triangular arrays. 

Next, the currents (to order H) are found from the 
distribution functions in the standard way. In this con
nection, the integrations over the reduced wave-vector 
zone are facilitated by an important and distinguishing 
feature of the present calculation, namely, the previ
ously mentioned smallness of the polaron bandwidth 
Jp with respect to KBT, i.e., JP<^KBT. AS a consequence 
of this inequality, the currents are calculated to the 
lowest nonvanishing order12 in (JP/KBT). From the 
symmetry of the band structure, it turns out that one 
must go to one higher order in this parameter for the 
square and face-centered lattices than for the three-site 

7 See (1.5) of the present text; also, (1.24) of III . 
8 R. E. Peierls, Z. Physik 80, 780 (1933). 
9 G. ZiPberman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955) 

[translation: Soviet Phys.—JETP 2, 650 (1956)]. 
10 This is justified in the text. 
11 A. H. Wilson, The Theory of Metals (Cambridge University 

Press, London, 1953), 2nd ed., p. 224. 
12 In essence, the exponential Boltzmann factor giving the 

equilibrium occupancy of the polaron-band states, is expanded in 
a Taylor series about (JP/KBT) =0. One retains the lowest order 
term for which the integral is nonvanishing. 
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structure. As a result, the Hall coefficients turn out to 
be structure-dependent in just the same way as in the 
site-jump regime. In particular, it is found that the Hall 
coefficient corresponding to the three-site structure is 
larger than "normal" (î normai— — l/nec) by a factor 
(KBT/JP). On the other hand, the square and body-
centered structure give just the normal result. The 
orders of magnitude of these results correspond to those 
obtained in the high-temperature (T>Tt) hopping 
regime discussed in I I I . As will be seen in the text, this 
contrasting behavior follows solely from the form of the 
Boltzmann equation discussed above and the nature of 
the polar on band. As such, it applies to any non-
degenerate distribution of carriers whose motion obeys 
a Boltzmann equation of similar form, and whose energy 
band is of sufficiently narrow width (due to tempera
ture-dependent vibrational narrowing or otherwise). 

I. BASIC EQUATION OF MOTION AND APPROPRIATE 
ZEROTH-ORDER STATES 

The present treatment is based on a suitable generali
zation of the one-dimensional molecular-crystal model 
(MCM) introduced in I and I I . This model contains the 
basic features of the real physical situation, and serves 
as a convenient example of the small polaron mecha
nism. The above-mentioned generalization consists of 
extending the MCM to a two-dimensional crystal lattice 
and to the case of applied dc electric and magnetic 
fields. This has been described in detail in I I I . For 
the sake of completeness, however, we here discuss the 
essential features of the model, referring the reader to 
I I I for further details. Those features of the later cal
culation which are thought to be of a particularly 
general nature will be pointed out as they arise. 

The crystal lattice is characterized by the vector site 
indexes 

g=giai+g2a2 , 

where (ai,a2) are a basic set of lattice displacement 
vectors and (gi,g2) are integers. These lattice points are 
occupied by a set of N diatomic molecules with fixed 
centers of gravity and orientations (taken to be normal 
to the plane of the two-dimensional crystal, for reasons 
discussed in I I I ) , but with variable internuclear separa
tions. Specifically, the "lattice Hamiltonian" in the 
absence of the excess electron, is assumed to have the 
form 

HL=Z{ (Pg
2/2M)+W"oW+h E Mm2xgxg+h} . (1.1) 

g h 

Here, the xg are the deviations from equilibrium of the 
internuclear separations of the individual molecules. 
The first two terms in (1.1) represent the kinetic and 
potential energies of the isolated molecules, while the 
third term provides nearest neighbor vibrational cou
pling (the sum over h goes over all nearest neighbors 
g + h , of s i teg) . 

The motion of the excess electron (or hole) in this 

two-dimensional molecular crystal is formulated in 
terms of a tight-binding approximation, in which the 
state of the system is written as a linear superposition, 

^ ( r , - • -xg- • •) = £ a(g,- • •%• • -)0g( '^g), (1.2) 
g 

of a basic set of "molecular" electronic wave functions, 
4>g(r,Xg). In the presence of a magnetic field, and with 
the assumptions13 made in I I I , this set of basis functions 
turns out to be related to the set of local molecular wave 
functions </>(r— g, xg) (which apply for the case of zero 
magnetic field), solely1* by the gauge transformation 

0g(r,^g) = e x p { - i e [ H x g ] . r / 2 * c } 0 ( r ~ g , i r g ) . (1.3) 

The coefficients a(g,- • -xg- • •) of the superposition 
(1.2) are each functions of all the (•••%•••)• The 
equations which they obey are obtained from the time-
dependent Schrodinger equation of the system by the 
standard "projection'' procedure. With approximation 
appropriate to the tight-binding case, the large mass 
ratio of electrons and nuclei, as well as three additional 
simplifications of the model (see I I I , footnote 2), they 
take the form 

d a ( g , - - - a v ) 
ifi 

dt 
= [#L+£(*g)+eF.g>(g,. • -ay • •) 

— / E exp(iagfg+h)a(g+]i, • • -xg- • •)• (1.4) 
h 

Here, the "magnetic" phase factors aglg+h arise es
sentially from the gauge factors appearing in (1.3), and 
are given by14 

* g , g + h = - ( V 2 ^ ) H . [ ( g + h ) X g ] . (1.5) 

The quantity E(xg) is the energy eigenvalue of the 
system consisting of the excess electron (or hole) and the 
gth isolated molecule. As discussed in I I I , the xg de
pendence of E(xg), which essentially represents the 
electron-lattice interaction, is taken to be linear: 

E(xg)=—Axg. (1.6) 

Finally, the term eF • g gives the electric field induced 
energy at site g (F being the electric field vector), and 
— J is the standard electronic-overlap integral of tight-
binding theory, 

- / = / ^ ( r - g ) [ / ( r - g ) < K r - g - h ) , (1.7) 

13 For purposes of treating the Hall effect, the effects of the 
magnetic field are considered only to terms linear in H. In addition, 
it is assumed (a) that both H and the vibration axes of the 
diatomic molecules are perpendicular to the plane of the crystal, 
and (b) that the local functions <j>(r—g,xg) are 2 states (/z=0). 
These assumptions have the simplifying feature of introducing no 
magnetic-field dependence (to first order) into the wave functions 
pertaining to the isolated molecules. The phase factors appearing 
in (1.3) are entirely a consequence of the "projection" procedure 
of tight-binding theory (see III). 

14 This particular form of the phase factors arises from the use 
of the "symmetrical" gauge, A = | [ H X r ] . The question of gauge 
in variance is discussed in III, Appendix E. 
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taken to be a constant for all pairs of nearest neighbor 
sites g, ( g+h ) . Here, £/(r—g) is the contribution of the 
molecule to the effective one-electron potential, and we 
have set = 0 in accordance with simplifications 
introduced in I I I . 

Transforming from the internuclear-displacement 
coordinates (•••%•••) to the normal-mode coordinates 
of the host crystal (•••#&•••) by means of the trans
formation 

xg= (2/A01/2 E Qk s in (k-g+ (TT/4)) , 
k 

and introducing (1.6), Eqs. (1.4) take the form 

in — 

dt 

f h2 d2 Ma>k
2 /2\^2 

k I 2M dqk
2 2 \N/ 

Xsin (k .g+(7 r /4 ) )+^F-gL(g , - • -qk* • •) 

-J £ exp(wxgfg+hMg+h, • • -qk- • •) , (1.8) 
h 

where 

cofc2 = co0
2+coi2 E cos(k«h) 

h 

gives the dispersion of the vibrational spectrum. (Here 
and in what follows, we neglect the vector character of 
k when it appears as a subscript.) 

Equation (1.8) is the basic starting point of the 
subsequent wave-packet analysis. Before going on to 
this, however, we first review zeroth-order eigenstates 
and eigenvalues appropriate to the local-site and 
polaron-band descriptions of the small polaron in the 
absence of applied fields ( F = H = 0 ) . 

As in I I and I I I , the present treatment is restricted 
to the case for which the /-proportional term of (1.8) 
can be treated as a small perturbation. The conditions 
on J which insure the validity of this approximation are 
discussed in II , and are assumed to apply to the present 
case. The zeroth-order (7 = 0) eigenstates of (1.8) are 

<*gi(&' * 'Qk' * •) = 5g,glXg1...i\^
1>...(- "Qk' ' *) , (1.9) 

where 

Xgi,...*r*<1>...(-••£*•••) 

= U$Nk«l{Mo>k/h){qk-qkV)-l (1.10) 
k 

represents a state of independent, displaced oscillators, 
$Nk(z) being a normalized harmonic oscillator eigen-
function of excitation quantum number Nk, and 

qkU=(2/Nyi2(A/Mo>i?) sin(k gH-fcr) (1,11) 

being the equilibrium normal-mode coordinates15 corre
sponding to the electron being localized on site gi. 

The eigenvalues corresponding to (1.9) are 

£(°>...^u>... = £ & + £ tim{Nkv+l), (1.12) 
k 

where 

/2\ A2 

£ 6 = - ( - ) E s in 2 (k .g+i^ '1.13) 
\NJ k 2Mo)k

2 

is the polaron binding energy.15 

Physically, these zeroth-order eigenstates and eigen
values correspond to the situation in which the electron 
is localized at site gi, and the vibrational state of the 
system specified by the set of quantum numbers 
(• • -Nk

a)- • •), giving the degree of excitation of each 
vibrational mode. I t is to be noted that these modes 
differ from the purely lattice vibrational modes (which 
apply in the absence of the electron) only to the extent 
that the equilibrium values of the normal-mode coordi
nates depend on the site occupied by the electron. 

For nonvanishing (but small) / , the time develop
ment of the system is treated by standard time-de
pendent perturbation theory. Specifically, the "wave 
function" of the system, a(g,- • -qk- • •)> is expanded in 
the zeroth order, "local-site" representation (1.9). The 
coefficients in this expansion are found to develop ac
cording to certain characteristic matrix elements of the 
perturbation Q.e., of the /-proportional term of (1.8)] 
which are of the form 

K Mm\112 "I 

— J (<?*-<?*<2))J 
— ) (<?*-<Z*(1))J- (1-14) 

These matrix elements clearly give rise to site jump 
transitions gi —»g2. One distinguishes the so-called 
"diagonal" transitions in which all the Nk remain un
changed, from the "nondiagonal" transitions in which 
one or more Nk change by ± 1 . I t turns out that the 
diagonal transitions alone characterize the polaron-band 
motion. I t is shown in I I , that by taking only these into 
account, the appropriate eigenstates are plane-wave 
combinations of (1.9), namely, | k 

a^...^*... = exp(ig-o')xg,...JRrfc..., (1.15) 

16 This arises as a result of incorporating the linear electron-
lattice interaction term (—Axg) in zeroth order. 
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with corresponding eigenvalues 

X E t * p ( * r - I i ) , (1.16) 
h 

[cf. (35) and (36) of I I ] . 
Here, the polaron-band states are labeled by a wave-

vector c, whose components in two-dimensional recipro
cal wave-vector space are given by 

<7,-= (2Tr/Nihi)ni, 

where m is an integer whose range is 

- ( A r , - l ) / 2 < » , < i ( ^ - l ) , 

and N{ is the number of molecular sites in the direction i 
(assumed odd for definiteness ;N=NvN2 gives the total 
number of molecules). 

The "vibrational overlap" factor, e~8('"Nk'"\ is 
nothing more than the diagonal matrix element of (1.14) 
(aside from the electronic overlap factor — / ) , i.e., 

— J (g*-ff*(2))J 

— J (^-^ ( 1 ))J. (1.17) 

Here, the quantity S is given by 

5(- • . J W • .) = E ( l + 2 N k ) y k / N , (1.18) 
k 

where 

yk= (1 — cosk-h) 
2McOA;2feA; 

are the characteristic coupling constants of the theory. 
Apart from the trigonometric factor, they give the ratio 
of the polaron binding energy [cf (1.13)] to the vibra
tional quantum, ficok. 

Finally, it is to be pointed out that the polaron 
bandwidth Jp^Je~s^"Nk'-') is, by virtue of (1.18), an 
exponentially decreasing function of the Nk, and, hence, 
of temperature.2-4-5 Even at T=0, S(- • -Ok- • •) may be 
expected to be of the order of 5-10, so that the factor 
e~s, which gives the ratio of the polaron bandwidth to 
the original electronic bandwidth, will be quite small 
(^-lO-2—10~4). As a consequence, the inequality 

JV<£KBT 

is readily satisfied, a feature crucial to the treatment of 
Sec. IV. 

II. CLASSICAL WAVEPAC-KET TREATMENT 

As discussed in the Introduction, our basic approach 
is to construct classical, Bloch-type wave packets from 
plane-wave combinations of localized polaron states 
(1.15), and to show that these propagate in <r space 
according to a conventional Lorentz force law. This re
sult is to be derived from our basic equation (1.8), 
wherein the effects of the applied magnetic field are 
given by the "magnetic" phase factors ag)g+h defined by 
(1.5). I t will be later noted that this behavior applies to 
any conventional tight-binding16 treatment of band mo
tion in which the effects of the magnetic field are like
wise formulated. This is pointed out in more detail at the 
end of this section and in Appendix A, where an 
analogous wave-packet treatment is given for the more 
conventional and simpler atomic tight-binding case dis
cussed by Zil'berman.9 

Proceeding with the analysis, the packets are assumed 
to satisfy two basic conditions. The first is that 

A £ » a , (2.1) 

where Ag is a linear dimension characterizing the size of 
the packet, and a is the lattice constant. As is well 
known, this condition implies that the extent of the 
packet in reciprocal wave-vector (a) space is very much 
less than the reduced wave-vector zone (^w/a). The 
second condition is 

G»Ag, (2.2) 

where G is the orbital radius of the packet in the applied 
magnetic field. This condition, which localizes the 
packet on its magnetic orbit, insures the validity of a 
classical description. I t is readily satisfied in the present 
treatment of the Hall effect which is concerned only 
with arbitrarily small field strengths (in particular, with 
effects which are linear in H). 

The wave-packet expansion of a(g,- • -qk- • •) [ap
pearing in (1.8)] in terms of the states (1.15) is written 
in the form 

a(g,-••?*•••) 

= N~v* L <v. . . . w . . . exp[-*(E<«. . .w . . . /*)*] 
< > • ' , • • - i v y . . . 

X e x p p ( g - g o ) V ] X g , . . W . . . ( - • -qk-' •)• (2.3) 

The packet has arbitrary centroid go. The expansion 
coefficients <v,....A/y... depend on all the vibrational 
quantum numbers as indicated. The use of the inter
action picture eliminates the local energies £(0)...^fc'... 
[cf. (1.12)] from the subsequent analysis. 

Substituting (2.3) into (1.8), multiplying from the left 
16 It should be pointed that while the Lorentz force law follows 

for general packets of Bloch states, the particular methods of the 
present paper, in which H is essentially treated as a perturbation, 
apply only to the tight-binding case, for which the bandwidth 
<3Cinterband energies. For this case, H can be so treated, and one 
can confine oneself to a single band (i.e., to a single electron 
orbital). 



HALL E F F E C T IN T H E P O L A R O N - B A N D R E G I M E 2449 

by iV""1/2exp[—i(g—g0)-or]xg,...iyr*..., summing over g 
and all the #&, and making use of the orthogonality 
relations 

-oo -co /Mo>k\ 
/ . . . / . . .1 -^^uqk.. • xt,...Nk...xgi...Nk>, 

J —CO " —00 \ Ylr t 

— 5 . . . N k . . . , . . . N k > . . . 

E e x p p ( « r - « r O - ( g - g o ) ] = # « , , ' , 
g 

(2.4) 

one gets 

dcff,...Nk... 
ifi 

dt 

= N~l L e x p p ( g - g o ) - ( c r / - ( r ) > ( F . g K , , . . ^ . . 

+ E exp(>"a:gig+h) E ca>,...Nk> ..N-

X e x p p ( g - g o ) - (ff'-or)] exp(*-<rO 

X(g, • • • i Y f c - - - | F | g + h , • • * • • • ) , (2.5) 

where (g, • • -AV • • | F | g + h , • • -AY- • •) is given by 
(1.14). ^ 

As discussed at the end of Sec. I, for purposes of 
describing the polaron-band motion, only the "diagonal" 
elements (Nk=Nk for all k) of (1.14) are retained. 
Then, employing (1.17), (2.5) becomes 

dc, 
ih-

(T,...iVfc.. 

dt 

= N~i E e x p p ( g - g 0 ) - ( ^ - o r ) > ( F - g K v . . ^ . . . 
B.v' 

_ / e - s c - - ^ . . o ^ e X p ( t o g , g + I l ) i V - 1 E ^ , . . i V f c . . . 
g,h a' 

X e x p p ( g - g o ) - (<r'-«r)] exp(ih-<r'), (2.6) 

where 5( - • -AV • •) is given by (1.18). 
To simplify the subsequent notation, in what follows 

we set 
Co.•••A7"&«" Cff , 

£ ( • • • # * • • • ) = £ , 

bearing in mind that c and 5 depend on the (• • • Nh • • •). 
The electric field-dependent term appearing on the 

right-hand side of (2.6) is handled in a manner analogous 
to Bethe and Sommerfeld's treatment17 of the accelera
tion of Bloch wave packets in a constant electric field. 
Writing g=go+(g—go), and representing the latter 
term by the operator —i gradff' in the usual way, one 

17 H. Bethe and A. Sommerfeld, in Handbuch der Physik, edited 
by H. Geiger and Karl Scheel (Julius Springer-Verlag, Berlin, 
1934), Vol. 24, p. 2. The difference is that the electron coordinate r 
here gets replaced by a discrete-site coordinate, g. 

obtains 

—iN"1 E (veF-grad,/ 

X e x p p ^ - c r ) - ( g - g o ) ] + ^ ( F - g o K , 

where use has been made of the first relation of (2.4) to 
simply the second term, which clearly represents the 
electric-field energy corresponding to the packet cen-
troid. In treating the first term, one employs the 
standard procedure of replacing the dense sum over <r' 
by an integral, and integrating by parts. The integrated 
term vanishes, since ca is assumed to be finite only over 
a very narrow extension of reduced wave-vector space, 
in accordance with inequality (2.1). Again using (2.4), 
one gets 

t*F-grad,c ,+e(F-goK. (2.7) 

The corresponding treatment of the magnetic field-
dependent term16 £the second term on the right-hand 
side of (2.6)] is somewhat more complicated, but 
straightforward. Again writing g=go+(g—go), and ap
plying the cyclic property of the scalar triplet product to 
the definition (1.5), one has 

«g.g+h= ~ (*/2Ac)H.[h x g o ] - (e/2*<0H-[hX (*-«<>)] 

= (*/2ftc)[H x go]• h - (*/2ftc)[H x h ] • ( g - g0). 

For the sum over g, one gets 

N~l E exp{*t(<r'-<r)- (e/2hc)(H x h ) ] • (g-go)} 
g 

reducing this term to 

-Je~s E ^exp{i ( i r '+(« /2f tc ) [Hxgo]) -h} 
h.cr' 

X 5a', <r + (e/2hc) [H Xh] 

= ~Je~S E <̂r + («/2»c)[HXh] 
h 

Xexp{*(«r+ (e/2fic)[H x g0]) • h} . (2.8) 

I t is convenient to define a kinetic wave vector K 
corresponding to the packet centroid: 

K ^ « r + - A ( g 0 ) = c r + — [ H x go]. (2.9) 
fie 2fic 

In addition, it is useful to define a new function of the 
kinetic momentum bK such that 

bK=C
K- (e/2hc) [ H X g o ] = Co. (2.10) 

Incorporating (2.7), (2.8), (2.9), and (2.10) into (2.6), 
one obtains 

/dbK\ 

\dtJo 
e(F-go)M-*eF-gradA' 

- / r 5 2 ] ^ + ( « » t H x h ] exp(^K-h), (2.11) 
h 

file:///dtJo
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where the subscript cr affixed to the time derivative 
denotes that <r is to be held fixed, in accordance with the 
original meaning of the term. In fact, since K is time-
dependent via the packet centroid, one has that 

(-) =(~W-VgradK. 
\dt/a \dt/K \dtJ 

From (2.9), noting that dgo/dt={yK) is the velocity of 
the packet centroid, one then has 

[ih-\ = ( i * r - ) + f i [ < V c > X H ] . g r a d « . (2.12) 
\ dt/a \ dt/K 2c 

Similarly, the form of the electric field term of (2.11) 
follows from the fact that, with t held constant, deriva
tives with respect to a can be replaced by corresponding 
derivatives with respect to K. 

Further progress in the development of (2.11) is 
afforded by the fact that, since h is a relative site vector 
and H is arbitrarily small, J*+(«/2«c)[Hxh] may be ex
panded to first order.18 Thus, 

h*+{e/2hc) [H xii}=bA [H x h ] • grad A 
2fic 

= bK+—[gradAXH]-h. 
2fic 

Again using the relation 

h exp (i%c-h.) = —i gradK exp (iv. • h ) , 

the last term of (2.11) may be written 

EA (i>-x H ] - g r a d A , (2.13) 

where 

EK^ —Je~s E exp(iK-h), 

yK=fr1gT3idKEl(. 
(2.14) 

Since the packet is assumed to be finite over only a 
very narrow range of cr space, we may replace (vK) 
by vK in the usual way. Using (2.12) and (2.13), (2.11) 
becomes 

/dbK\ i e\ 1 1 
I — J =- [«F- g o + £ j J c + 7 | F + - [ v K x H ] I -g radA. 
\dt 

Now, 

ft 

d dh* dbK 

\UK\ UtC\UK 

dt dt dt 
18The condition here is |h|<3Cao, where ao=(hc/eH)112 is the 

characteristic magnetic length. 

where the asterisk denotes the complex-conjugate 
quantity. With 

/«=i*«i2 , 
and reinstating the (• • - i W • •) which were suppressed 
just after (2.6), one obtains 

dfK,...Nk... e[ 1 
= - F + - [ ^ , . . . ^ . . . X H ] 

dt ft I c 

•gmdKfK,...Nk.... (2.15) 

Equation (2.15) describes the time development of 
the wave packets in K space corresponding to a given 
distribution of the vibrational quantum numbers, 
(• • -Njc' • •)• The final step, then, is to take the thermal 
average of (2.15) over a Boltzmann distribution. The 
average of an arbitrary function Q is defined by 

<6(- • •#* • • -)>av=Z" 

X e x p { - j 8 E * « t ( ^ i b + i ) } , 
k 

where 

exp f - jSEf t co ib^ t+ i )} 

is the vibrational partition function, and 

P=1/KBT, 

KB being Boltzmann's constant, and T the absolute 
temperature. Physically, this averaging process corre
sponds to viewing the classical motion of the wave 
packet, described by (2.15), against the "average back
ground'' of the lattice motions. Recalling the definitions 
(2.14), one must consider the average 

(e , - £ ( . . . JVk . . . ) 
JK,.'.Nk--./& 

where 5(• • - i W • •) is given by (1.18). This is evaluated 
most easily by recognizing that e~S('"Nk'") can be re
placed19 by e-

s('-(N*>' - •) w i th but small fluctuations of 
order 1/N. With the definitions 

Jp~Je~S{-

^7k 
5 r = E — coth 

* N 

{Nk).>-)==Je-STy 

'Pfl0)k 
(2.16) 

/ K = ( / J C , . . . 2 V & . . . ) , 

Eq. (2.15) becomes 

dfK e( 1 
— = - F + - [ v K x H ] 
dt ft I c 

•gmdKfK, (2.17) 

19 That is, letting Q(- • - iW • •) =e"8^"-N^"\ with S given by 
the sum (1.18), it can be verified by explicit calculation that 

i.e., that fluctuations of Q about (Q) are negligible. 
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where fK is the standard distribution function, as applied 
to a spatially homogeneous situation. 

This is the general result: the Lorentz force term of 
the Boltzmann transport equation. I t is again pointed 
out the magnetic part of this term arises from the phase 
factors ag)g+h, which alone contain the magnetic-field 
dependence of our starting equation (1.8). 

For our purposes, since we will be considering the 
motion of the packet only for short times,20 the packet 
centroid, go, will not depart appreciably from its initial 
value which, for convenience, we take to be go = 0. 
Then, according to (2.9), K may be replaced by cr in 
(2.17), giving 

df* e\ 1 ] 
— = - F + - [ v , x H ] -grad,/. . (2.18) 
dt ft I c J 

To obtain the entire Boltzmann equation, we augment 
(2.18) by the collision term for which we make a 
relaxation time assumption. As shown in I I (footnote 
20), the relaxation time representing the effects of the 
nondiagonal transitions, is a constant,21 independent of 
or. The final stationary Boltzmann equation is 

df. e f 1 1 / — / (0) 

— = 0 = - F + - [ v , x H ] . g r a d , / , — — 
dt ft I c J r 

where 
f^^Ae-EjKBT 

(2.19) 

(2.20) 

is the equilibrium distribution function of the non-
degenerate polaron gas, and A is a normalization con
stant determined by the condition 

/ 
f,<-<»da=n, (2.21) 

where the integration is over a reduced zone, and n is 
the density of the polaron gas. 

Before concluding this section, it is of some value to 
stop and take note of what has been done. The wave-
packet expansion (2.3) superimposes plane-wave combi
nations of localized polaron states with a distribution of 
(• • -AV • •)• However, in going from (2.5) to (2.6), we 
retain only the "diagonal" matrix elements (Nk—Nk, 
for all k) which entirely characterize the polaron band 
motion. From this point on, then, the vibrational 
quantum numbers play a more or less passive role, their 
only important effect, as discussed previously, being to 
reduce the polaron bandwidth (in comparison with the 

20 That is, cocr<<Cl, where a)c = {va)/G is the cyclotron frequency. 
If r is due only to the nondiagonal transitions, which play the role 
of scattering between polaron-band states (see II), it is assumed 
that T is a substantial fraction of Tt, say ~\Tt, so that, for 
sufficiently small H, this inequality is satisfied. Of course, for 
T>Tt, by definition, the band approximation and Boltzmann 
equation are no longer valid. 

21 As far as other scattering mechanisms are concerned, since the 
features of interest derive from effects other than the possible a 
dependence of ra, the latter will be taken to be a constant as a 
suitable first approximation. 

original electronic bandwidth) via the vibrational over
lap factor e~S{,"Nk'"). In fact, the entire dynamical be
havior follows for a given (• • • Nh • • •) as is evidenced by 
(2.15); subsequent averaging over a Boltzmann distri
bution of the (• • -Njc' • •) then gives the result (2.17). 
The point here is that by suppressing the (• • - i W • •) 
and replacing the polaron bandwidth by some charac
teristic bandwidth, one finds that an equation of the 
type (2.6) is obeyed by the "envelope" function ca in a 
conventional tight-binding description of band motion 
in which the effects of the magnetic field are likewise 
formulated in terms of the "magnetic phase factors" 
introduced by Peierls8 and ZiFberman.9 A particularly 
simple example in the atomic tight-binding scheme 
presented by Zil'berman. An outline of his calculation 
together with a wave-packet treatment analogous to the 
one presented in the text, is given in Appendix A. 

III. SOLUTION OF THE BOLTZMANN EQUATION 

I t is apparent that the calculation has been reduced 
to the solution of a conventional Boltzmann transport 
equation (2.19) for an energy band of tight-binding 
form, where the polaron bandwidth Jp—Je~ST [ci. 
(2.16)] replaces the electronic overlap integral / . 

Adopting a Cartesian coordinate system with coordi
nate axes denoted by (1,2,3), taking H in the 3 direction, 
F in the (1,2) plane, and setting 

f.=w»+g., 
(2.19) becomes 

e[F1Vx+F2v2]+-
eH\ 

tic 
v2 vr 

L d(Ti d(T2 

1 g« 

J-.0, (3.1) 

where, as usual, only terms of first order in F are re
tained, and f^0) makes no contribution to the magnetic 
term. Setting 

«/. 
(0) 

dE9 

- 0 , 

and replacing \ff by (1/ti) grad^E,, (3.1) becomes 

eH/dEa d dE9 d 

fl2c \ dao dai da 

5* d \ 4>9 

W 
T± d(T2' T 

er dE„ dEa-l 
-\F1 +F2 . (3.2) 

Since, for purposes of calculating the Hall effect, 0 , is 
needed only to first order in H, (3.2) is solved by an 
iteration procedure.22 To the desired order of accuracy, 
the solution23 is 

0 , = ^ ( o ) + 4 v ( 1 ) , (3.3) 

22 This is the method of Jones and Zener; see Ref. 11. 
23 This agrees with the expanded form of Wilson's Eq. (8.551.3). 
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where 

erf dE<, 
0,(o) = [F1 + 

% \ d(Ti 

e2r2H/dEa d 
*.<» = ( -

dEc 

) • 6(T2 

BE, d 

(3.4) 

ftc \d(Ti d(?2 da2 da ; ) 

X [Fr-
SEa 

1 

d(Ti 
•Ft • 

da2/ 

The current is given by 

2 
V 

(2*-)2 
Vo0(r daLda2, (3.6) 

from which the elements of the conductivity tensor <ri3-
are defined by the relations 

ji=o-ijFj. (i, y = l , 2). (3.7) 

From the experimental condition that J2 = 0, the Hall 
coefficient may be simply expressed in terms of the ai3\ 
Neglecting correction of order H2, we have that 

R=(l/H)a12/a11
2. (3.8) 

In the next section, the ô y will be calculated for the 
energy band structures corresponding to the lattice 
geometries previously described. From (3.8), we then 
readily obtain the respective Hall coefficients. 

IV. EXPLICIT STRUCTURE CALCULATIONS FOR 
THE HALL COEFFICIENTS 

In this section, we solve for the elements a a of the 
conductivity tensor for the two-dimensional square, 
face-centered, and triangular lattice structures. These 
will be described and discussed in turn. 

Before getting into the calculations, it is convenient 
at this point to consider a feature common to all three 
cases, namely, the extreme smallness of the polaron 
bandwidth with respect to KBT. Specifically, in calcu
lating the current (3.6), it suffices to expand the factor 
(dfff^/dEff) in a power series in EG/KBT to that order 
which gives the first nonvanishing contribution to j . 
Thus, with f9W = Ae-E'lKBT, one has that 

Ea 1/Ea\
2 

exV(-Eff/KBT)=l -+-( — ) + ' ' ' , 
KBT 2\KBT/ 

d exp(—EJKBT) 

dEa KBT (KBT)2 

This expansion will be used immediately below. We now 
turn to the various geometries. 

Square Lattice 

For this case, the relative-site vectors are given by 

h = a ( ± l , 0 ) , etc., 

where a is the lattice constant. From (2.14), recalling 
that K is to be replaced by <r, one has 

Eff= —2Jp(co$cria-\-co$<T2a); 

Mi= V sin<rt-(z, (i= 1, 2), 

where 
V=2Jva/ 

(4.2) 

(4.3) 

(3.5) is a characteristic velocity, and 

2Jp=2Je-sT 

is the polaron bandwidth. 
The integrations indicated in (3.6) are to be carried 

out over the reduced wave-vector zone, which, for this 
case, is given by 

—ir/a<ai, <r2<'ir/a. 

The detailed calculations of the <rij and expressions 
for 0ff

(o) and 0(r
(1) are given in Appendix B. We will 

present only the final results. For the case of crn, the 
first nonvanishing contribution occurs for the first term 
in the expansion (4.1). Eliminating the normalization 
constant A of (2.20) by condition (2.21), one finds that 

0 - i i = -
2KBT 

-V2 (4.4) 

where V is given by (4.3). 
As shown in Appendix B, one must go to the second 

term in expansion (4.1) to obtain a nonvanishing result 
for <ri2. The result is 

ne3r F4 

O \2 — H . 
4c (KBT)2 

(4.5) 

Substituting (4.4) and (4.5) into (3.8), one obtains 

R8Q=-l/nec, (4.6) 

the normal result. 

Face-Centered Structure 

The direct reciprocal lattice structures are shown in 
Fig. 1. We have 

h=a(±i,d=i), (4.7) 

(4.1) and 

E<r= —4:JP cos(io-ia) cos(|o-2#). 

In Appendix B, we find that 

ne2r 
0-11= 

4KBT 
-F 2 , 

F4 
(4.8) 

0 " 1 2 — • 

16c {KBT)2' 
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•^•("(-•g-.Tr) hi'o(^.-y) wbr«Ku) 

k2=o(4.=f) 

DIRECT LATTICE RECIPROCAL LATTICE 
SHOWING 

FIRST BRILLOUIN ZONE 

FIG. 1. Direct and reciprocal lattices for the face-centered and 
triangular structures. 

where, again, one must go to the second term in the 
expansion (4.1) to obtain a nonvanishing.contribution 
of 0-12. From (3.8) one finds that 

RFC-

again the normal result. 

- 1/nec, (4.9) 

Triangular Lattice Structure 

This structure has the property that the nearest 
neighbors of a given site are nearest neighbors of one 
another. Such an arrangement was crucial in giving a 
larger than normal Hall effect in the thermally activated 
hopping regime24 discussed in paper I I I (Ref. 1). A 
similar order of magnitude result is obtained in the 
present case. 

The direct and reciprocal lattices are shown in Fig. 1. 
The reduced zone is indicated by the shaded area. The 
band structure25 is 

Eff= — 2/3J[coso-i#+2 cos(|(ria) cos(§v3cr2a)]. (4.10) 

The detailed calculation for this case are presented in 
Appendix C. We find that 

4:KBT 
(4.11) 

24 The reason, essentially, is that the lowest order quantum 
mechanical interference process responsible for the Hall effect, is 
characteristic of such a geometry, and leads to a Hall current 
~ / 3 (see III). 

25 Alternately, the calculation of the kinetic coefficients <r%j, for 
this case, could be carried out in the coordinate system given by 
the basis vectors of the triangular lattice. In such a system, Ea has 
a simple and symmetric form. However, this has the disadvantage 
that the diagonal and off-diagonal elements of <r;/ are no longer 
purely magnetic-field-independent and -dependent [to 0(H)~]i re
spectively. Moreover, one must ultimately transform to Cartesian 
axes in order to evaluate R. Hence, it is simpler to work in such a 
system from the start, in spite of the unsymmetrical form of E„ and 
its derivatives. 

However, in the calculation of ci2, unlike the previous 
two cases, we obtain a nonvanishing contribution from 
the first term in the expansion (4.1). As a result, (Tn^P 
rather than ~ / 4 . We find 

ne2T2 3 
cri2= aVz, 

and 

(he) (KBT) 16 

1 1/KBT\ 
Rs= ) , 

nee 6\Jp/ 

(4.12) 

(4.13) 

which is the larger than normal result previously re
ferred to. 

I t is to be noted that the results of this section follow 
solely from (2.19) and the inequality JP<^KBT. That is, 
once having established that the polaron packets 
propagate according to (2.19), and having assumed that 
their relaxation is characterized by a constant r, the 
only specifically polaron-like feature upon which the 
above results depend is the vibrational narrowing of the 
polaron band. Hence, this behavior more generally 
applies to any narrow-band situation which satisfies the 
above conditions. The order of magnitude of the Hall 
coefficients for an energy- or wave-vector-dependent r, 
or for those cases in which a relaxation time cannot be 
defined, would, however, require further investigation. 

V. SUMMARY 

The results of this paper are twofold. First, it has been 
shown that, in the classical limit, the effects of the 
1 'magnetic phase factors," ajglg+h, (which are quantum 
mechanical in origin) are given entirely by the con
ventional Lorentz force equation. Secondly, detailed 
calculations show that the Hall coefficient corresponding 
to a lattice geometry in which three sites are mutually 
nearest neighbors, is larger than *'normal." The latter 
result was previously obtained in the high-temperature 
(T>Tt), thermally activated "hopping" regime of small 
polaron motion. There, this result was a reflection of the 
fact that the lowest order quantum mechanical inter
ference process responsible for the Hall effect, is charac
teristic of the three-site geometry. In the present case 
of the polaron-band regime, however, the result arises 
as a consequence of the very narrow polaron bandwidths 
(JP<KKBT). These similarities suggest that the Hall 
effect in both regimes might eventually be treated and 
understood from a more unified point of view. 
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APPENDIX A 

In this Appendix, we redo the wave-packet analysis 
of Sec. I I for the more conventional, and notationally 
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simpler atomic tight-binding case discussed by ZiPber-
man.9 As has been pointed out in Ref. 3 (footnote 8), 
some modifications of his method are required to 
properly treat the present case. 

Let $o(r) be the eigenfunction of the electron in an 
atom located at n = 0 . ZiPberman derives the magnetic 
field H from the "unsymmetrical" gauge A = (0,Hxfi). 
For this case, the appropriate basis functions for an 
electron located at site n, are, in analogy with (1.3) (also 
see Sec. 1 of I I I ) , 

<£n(r) = exp{ — ia^nxiy—^2)}<£o(r— n ) , (Al) 

where Q>Q= (hc/eE)112 is the characteristic "magnetic" 
length. 

These functions satisfy the wave equations 

eHx"] 1 f r eHx 
—\pi*+\P*+ 
2m[ L c . 

+j?i 0n 

+ [7( r -n)+eF 2 Cy-»a)]«a=J5;n«a , (A2) 

where V(t— n) is the atomic potential at site n, and 
F=F2 is the applied electric field. Substituting (Al) into 
(A2), one gets the equation obeyed by <£0(r—-n): 

1 

2m 

r eH 
•ni) \+pz2Uo 

+ [ 7 ( r - n ) + « F 2 ( y - » 2 ) > o = £ n 0 o . (A3) 

However, as a consequence of the gauge dependence 
of the Schrodinger equation, <£o(r— n) contains an 
implicit (linear) field dependence neglected by ZiPber
man. To account for this, we introduce the additional 
gauge transformation 

<£o(r--n) = exp[— %ia<r2(x--ni)(y—^2)]<£oo(r— n ) , (A4) 

from which it can be established that if, as implied by 
ZiPberman's treatment, the basis functions are non-
degenerate atomic orbitals (and, therefore, an s states, 
^ = 0 ) , </>oo is independent of magnetic field to order H1. 
The entire magnetic-field dependence of the basic states 
is then given by the product of (Al) and (A4). 

Getting back to the main trend of the argument, if we 
expand the wave function of the electron in the periodic 
field of the lattice in the representation of the <£n, 

^ = Z an<£n(r) (A5) 

[cf. (1.2) of the present text ] , the expansion coefficients 
an are found to obey the equations of motion 

€001= £ #n6mn (A6) 

[cf. (1.4)]. 
Here e — E—Ea, E being the energy of the electron 

in the periodic potential, and Ea being the energy in the 
isolated atom. With the phase factors given by (Al) and 

(A4), the €mn turn out to be 

emn=exp{|io:o""2[(wi—n^)n2— (m2—n2)n{]} 

X [A ( m - n)+eF2n28mn}, (A7) 

where the exchange or overlap integral A (q) is 

A(q) = / * o o ( r - q ) [ 7 p ( r ) - F ( r ) ] 0 o o ( r ) r f 7 , (A8) 

Vp being the periodic potential and V the atomic 
potential. 

We introduce the wave-packet expansion 

#m=X) c<r exp[i<r- (m— mo)] (A9) 

[cf. (2.3)] into (A5). 
Considering the time-dependent analog of (A6) 

(E —> ihd/dt), one gets the following equation of motion 
for the coefficients ca\ 

[ifi Ea )c 
\ dt J 

--N~leF2 E exp[i(m—m0)-(or'—cr)]<v 
m.cr' 

- E exp[iao~2 (m2hi—Wife)]i (h) exp (—ih • v') 
m , h 

X E e x p p ( m - m 0 ) • (cr'-<r)]<v, (A10) 
a' 

of the same form as text Eq. (2.5). 
Treating the field-dependent terms of (A10) by argu

ments identical to those used in the text, one obtains 

dfK eF2dfK eH/ dfK dfK\ 
— = - + — U vr— J , (All) 
dt it 3K2 tic \ 6KI dK2/ 

where the components of the kinetic wave vector K are 

Ki=cri— Jao"~2Wo2, 

K2=or2+^a<r2nioi, 

Here, the distribution function fK is given by 

where 
VK\, Ki, KZ CKX + JQ!o_2mo2 ) K% — £ao~ 2raoi , K% > 

and the ixh component of velocity of an electron in state 
K is 

l d 
Vi= E A(h) exp(— ix-h). 

fi dm h. 

This establishes the Lorentz force law for this case. 
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APPENDIX B 

In this Appendix, we present the detailed expressions 
for <£<r(0), <t><ra), and j for the case of the square and face-
centered lattice structures. 

Square Lattice 

For the band structure (4.2), the expressions (3.4) 
and (3.5) become 

* ( 0 ) = _ erV(Fi sina-ia+^2 sin<72a), 

e2r2Ha 
0<rd) = V2(Fi siricria cosa2a 

fie 
(Bl) 

-F2 cosaia sincr2a), 

where V is defined by (4.3). 
We first calculate the current in the 1 direction as

sociated with the magnetic-field-independent part of the 
distribution function 0<r(o). From (3.6), we have 

Ji 
(0) = _ 

1 

-eA 
/

ir/a /»7r/ a 

- T / a J — IT/ a 

d<T1da2v1<j>^(df(r^/dE<T) 

X 

/

7r/ a pit I a 

/ d(nd(72 

-ir I a J —ir/a 

Xsino-iaCFi sm(Tia+F2 sin<r2a) 

1 r2Jp ~\] 
exp (cosa-ia+coS(72a) 

KBT LKBT J J 
(B2) 

I t is obvious from symmetry considerations that the F2-
proportional term vanishes identically for arbitrary 
(JP/KBT). With regard to the jF rproportional term, it 
clearly suffices to replace the Boltzmann exponential 
factor by unity Cthis corresponds to retaining only the 
first term in the expansion (4.1)]. 

Evaluating A by (2.21), we get 

A = hna2. 
This gives 

an= (ne2r/2KBT)V2, (B3) 

which is the text Eq. (4.4). 
For the component of the current in the 1 direction 

associated the magnetic-field-dependent part <£<r(1), we 
have 

i i ( 1 ) = 
2 e*r2H r*la r*la 

-VdA I I da1d<r2 sincria / -
-ir/ aJ —ir/ a 

(2TT)2 fie 

X (F2 sino-ia cosa2a—Fi cos<na sino-2a) 

X — 
1 r2J9 -i 1 

exp| ——(cos<7ia+coso-2a) } . (B4) 
KBT LKBT 

The jPi-proportional term now vanishes by symmetry 

for arbitrary (JP/KBT). If the exponent were replaced by 
unity, the iVproportional term would also vanish; 
hence, the first nonvanishing contribution comes from 
the second term in the expansion of the exponent, 
corresponding to the second term in the expansion (4.1). 
As a result, an^J^. Specifically, 

Cl2 = H-
VA 

4c (KBT)2 
(B5) 

which is the text Eq. (4.5). Using (B3) and (B5), we 
obtain the result (4.6) for the Hall coefficient. 

Face-Centered Structure 

Using (4.7), (3.4) and (3.5) take the form 

0<r(O)= — erV[_Fi sin(§oria) cos(|o-2a) 

+F2 cos(Jcna) sin(i(j2a)], 

e2T2Ha (B6) 
0 (̂1) = —•—V2\_—Fi sin(J(72a) cos(|o-2a) 

2hc 

-\-F2 sin(|o-ia) cos(§o-i#)]. 

In performing the required integration over <r space 
to obtain the currents, one must strictly integrate over 
the reduced wave-vector zone shown in Fig. 1. Although 
this band structure is quite simple, we propose to carry 
out the integrations by an alternate approximate method 
which simplifies the calculation considerably in the case 
of more complex structures. The method consists of 
taking advantage of the periodicity in extended <r space 
by integrating over a large square containing many 
reduced zones, and dividing by the number of zones. In 
so doing, one makes an error proportional to the 
perimeter to area ratio which can be made arbitrary 
small for a sufficiently large square. This procedure will 
be applied to the triangular lattice structure presented 
in Appendix C, and will serve to simplify the calculation 
for more complex structures which may be considered 
in the future. 

In the present case, we integrate over a square 
(irG/a) on an edge, and divide by the number of zones, 
which is (47rG/a) 2 / [KV^) 2 ] = 2G2. Thus, 

Ji ( 0 ) = -

(2T)2 
W2A-

1 

2G2 

/» nZirGja 

X I I d<r±dcr2 sin(Jcria) cos(Jo-2a) 
J J-2irG/a 

X[Fi sin(§<ri#) cos(^cr2a)+F2 cos(%aia) sin(Jo-2a)] 

X 
1 (\JP \ l 

exp[ cos(|cria) cos(^a2a) J . 
KBT \KBT J A 

CB7) 



2456 L . F R I E D M A N 

The normalization constant is readily found to be 

A = \na2. 

Proceeding just as in the case of the square lattice, we 
get 

(711 = 
4KBT 

-V\ (B8) 

The expression for ji (1) is 

2 eh2Ha 1 
-Vi) = _ vz— 

(2TT)2 2hc 2G2 

X / / daidvi singer id) cos(^a2a) 
J J-2irG/a 

X[^isin(|o-2a) cos(Jor2a)+F2sin(Ja-ia) cos(Jtria)] 

r i /4/P \" 
X expf — cos(|o-ia) cos(|o-2a) J 

L KBT \KBT /. 
from which one obtains 

We also have that 

z>i= V[smaia+sm(^(Xia) cos(|v3o-2a)], (C3) 

fl2=v3y cos(Jo-ia) sin(|v3"o-2a). (C4) 

We use the same method of integration as in the 
previous case. Here, however, it is more convenient to 
integrate over a large rectangle, (4:TG/O) along ah 

(AwG/^a) along a2. The number of zones in the rectan
gle is 

4 /2TTG\ 2 / 2 /2TT\ 2 

y/5\ a ) I v 5 \ a / 

We also find that 

A = hJ3na\ 

Using (Bl) and (B3) in (3.6), one obtains 

0"12— " -H- (B9) 
16c feT)2 

The result (4.9) then follows immediately. 

APPENDIX C 

In this Appendix, we present the detailed calculations 
for the case of the three-site geometry. Using (4.10), 
(3.4) and (3.5) become25 

<t>a(® = — erF[Fi(sino-i^+sin(|cria) cos(jV5cr2a)) 

+F2(V5 cos&na) sin(Jv5(72a))], (CI) 

e2r2H l 
<j)cra) = F2v3aj [^($maia+sm(^aid) cos(Jv3o-2a)) 

he l 

Xsin(|o-ia) sin(^3(r2a)+cos(i(7ia) sin^vSo^a) 

X (coscria+| cos(icria) cos(|v3a-2a))]Fi—£v3" 

X[(sin(ria+sin(J(7ia) cos(|V3o-2a)) 

Xcos(Jo-ia) cos(|vJa-2a) 

+ cos(Ja-ia) sin(io-ia) sin2(|v5o-2a)]F2 | . (C2) 

crii= F 2 . 
4/c5r 

(C5) 

In calculating a12, one must consider the product of 
(C2) and (C3) in (3.6). A careful examination of the 
integrand shows that a finite contribution comes from 
the product of the first term of Vi with the second term 
of the bracket multiplying F2. Moreover, this contribu
tion does not require expansion of the exponent, [i.e., 
corresponding to taking the first term in the expansion 
(4.1)]. One obtains 

and, finally, 

3 nezr2H 
<ri2= a Vs, 

16 (fic)(KBT) 

1 1/KBT\ 
Rs= ) , 

nee 6 \ J v I 

(C6) 

(C7) 

which is the result given by (4.13). 


